The general algorithm of balanced squares

Memet Sahin¹, Asker Ali Abiyev¹, Azer Abiyev² 1) Gaziantep University, Department of Matematics, Gaziantep-Turkey 2) Radiation Institute of National Academy Sciences of Azerbaijan-Baku

Abstract

The algorithm finded by us for generating magic squares from pozitive number allow generating magic squares any numbers including complex number. The properties of this magic (balanced) squares may open some research directions for several scientific disciplines like genetic engineering, operational research, intelligent computation, physics, etc. Taking into consideration these will describe general algoritm of balanced squares.

Key-words: magic squares, graphs, Euler cycle, algorithms, balanced squares.

1. Introduction

Let a square is divided into n^2 partial of equal cells by the help of vertical and horizontal lines of n-1. This square is called a square of n^{th} order.

Let the elements of integers set $\{1, 2, 3, ..., n^2\}$ are written in the n^{th} square so that the sums of integers either on the rows or on the columns and diagonals, as well, are the same and equal to S.

$$S = \frac{n^2 + 1}{2}n$$

This number is called a magic number.

If the numbers in their respective locations in the magic squares are considered as pointmasses, then the mass center and geometric center a system will be coincidence. This is one of the most important properties of the magic squares. Therefore, it is advisable that to call "balanced squares" rather than "magic squares" [1].

2. The general algorithm of balanced squares

In order to understand this algorithm, where we begin to:

- 1. We should get 4 arithmetic sequences consist of any number;
- 2. We should divide the n^{th} order square to concentric frames;
- 3. We should get closed symmetric graphs.

These 4 arithmetic sequences will be marked α , β , γ , δ with the constants b, c, -b, -c, respectively. Let the initial number of the first arithmetic sequence is a_0 , where a_0 , b, c are any number (rational, irrational, transcendental, complex), even symbols. Four arithmetic sequences, which have equal number of terms, form one group [2].

All the sequences of balanced square of n^{th} order consist of $\frac{n}{2}$ groups for even order or

 $\frac{n+1}{2}$ groups for odd order.

Let's see an example:

Let's get 4 sequences for n^{th} group of n^{th} order square, they are: $\alpha_n - a_0, [a_0 + b], [a_0 + 2b], ..., [a_0 + (n-2)b], [a_0 + (n-1)b];$ $\beta_n - [a_0 + (n-1)b], [a_0 + (n-1)b + c], ..., [a_0 + (n-1)b + (n-2)c], [a_0 + (n-1)b + (n-1)c];$ $\gamma_n - [a_0 + (n-1)b + (n-1)c], [a_0 + (n-2)b + (n-1)c], ..., [a_0 + b + (n-1)c], [a_0 + (n-1)c];$

 $\delta_{n} - [a_{0} + (n-1)c], [a_{0} + (n-2)c], ..., [a_{0} + 2c], [a_{0} + c], a_{0}.$

It is shown that, the sums of corresponding terms of α_n , γ_n and β_n , δ_n are equal each other. This number is constant and that is $2a_0 + (n-1)(b+c)$. For examples:

$$a_{0} + [a_{0} + (n-1)b + (n-1)c] = a_{0} + b + [a_{0} + (n-2)b + (n-1)c] = [a_{0} + (n-1)b] + [a_{0} + (n-1)c] = ... = 2a_{0} + (n-1)(b+c).$$

For the other sequences groups $\{\alpha_{n-2}, \beta_{n-2}, \gamma_{n-2}, \delta_{n-2}, \dots, \alpha_2, \beta_2, \gamma_2, \delta_2\}$ this value is constant, $2a_0 + (n-1)(b+c)$. This constant is called first invariant the balanced square.

If we multiply the constant by $\frac{n^2}{2}$, we will obtain sum of all numbers in cells of the balanced square.

On the other hand the sum equal to nS, where S is magic number. So:

$$nS = \frac{n^2}{2} \Big[2a_0 + (n-1)(b+c) \Big] \Longrightarrow S = \frac{n}{2} \Big[2a_0 + (n-1)(b+c) \Big]$$

If $a_0 = 1$, b = 1, c = n, we obtain magic number for balanced square, consists of integers

$$\{1, 2, 3, ..., n^2\}, \qquad S = \frac{n^2 + 1}{2}n.$$

It is shown that, the sequences of n^{th} groups mentioned above, the last term of a sequence is the first term of the next. The last term of fourth sequence is the first term of the first sequence.

Note that every sequence's number of terms equal to the order groups. This fact is valid for all groups sequences.

Definition 1. A figure consisted of the n^{th} order square's outer- most cells, is called frame. The last frame left behind is a square of second order. All the frames obtained are concentric.

Theorem 1: A square of n^{th} order includes $\frac{n}{2}-1$ concentric frames and a square of second

order.

If we assume that the second order square as a frame, then the frames number is equal to the number of group sequences, that is $\frac{n}{2}$.

Summary:

a)The number of cells in the frames is equal to the number of terms of groups.

b) In beginning and last terms of the sequences in each group are located on the frame corners.

2.1 THE GRAPS OF THE BALANCED DOUBLE-EVEN SQUARE OF N^{th} **ORDER**

Definition 2: A finite set in which some pairs of points are connected by oriented arrow (or arcs) is called an oriented graph. Points and arcs are called, respectively vertices and sides of the oriented graph. If the oriented graph the number of sides which reach a vertex is equal to the number of sides which leave it, is called a regular oriented graph. Let's denote this number by p. The regular oriented graph with p=1 is called regular closed oriented graph.

Theorem 2: A cycle is made, by going only one time along each side of regular graph is called closed oriented graph. This cycle is called Euler cycle [3]. In figure1 example of an Euler cycle is shown.

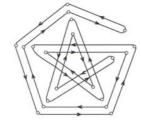


Fig.1. Euler cycle.

Here the reguler oriented closed graph, founded by Abiyev will be called Abiyev cycle. The main idea of the method, which is presented here is to form four arithmetic sequences and write them by the Abiyev cycles into the consecutively concentric frames. Abiyev cycles depend on if the order of a frame is double-even or single-even [4]. The Abiyev cycles are enumerated in table. The sum of Abiyev cycles is equal to the sum of the concentric frames.

We write respectively for $\left\{n-2(i-1) \mid i \in 1,3,5,..., \left(\frac{n}{2}-5\right)\right\}^{th}$ order frames of double-even balanced square integers of sequences will be written by the E_n Abiyev cycle, for $\left\{n-2(i-1) \mid i \in 2, 4, 6, ..., \left(\frac{n}{2}-2\right)\right\}^{th}$ order frames integers will be written by E_{n-2} Abiyev cycle. Because Abiyev cycles E_n , E_{n-4} , E_{n-8} , ..., E_{12} and E_{n-2} , E_{n-6} , E_{n-10} , ..., E_6 are same, respectively.

Abiyev cycles of 8^{th} and 4^{th} frames of square which we consider are different from E_n and Abiyev cycle of 2^{ud} order central square are different from E_{n-2} . So, Abiyev cycles E_{16}, E_{14}, E_{12} ; E_{10}, E_8, E_6 ; and E_4, E_2 are shown in figures 2, 3, and 4, respectively.

Remark: Only the cycles of 4^{th} order balanced square are different from E_4 and E_2 for the balanced even square.

Example for n=16 the general balanced square is shown in figure 5.

2.2. THE GRAPS OF BALANCED SINGLE-EVEN SQUARES OF N^{th} ORDER

Now, we apply the method suggested for n^{th} order balanced double-even squares to the balanced single-even squares. Let's denote the corresponding Abiyev cycles by $E'_n, E'_{n-2}, E'_{n-4}, \dots, E'_4, E'_2$ of n^{th} order balanced square.

We write respectively the integers of sequences for $\left\{n-2(i-1) \mid i \in 2, 4, 6, ..., \left(\frac{n}{2}-1\right)\right\}^{h}$ and

 $\left\{ n - 2(i - 1) \middle| i \in 3, 5, 7, \dots, \left(\frac{n}{2} - 2\right) \right\}^{th}$

order frames which are include in single-even

order balanced square with E'_{n-2} and E'_{n-4} , because E'_{n-2} , E'_{n-6} , E'_{n-10} , ..., E'_8 and E'_{n-4} , E'_{n-8} , E'_{n-12} , ..., E'_6 are the same between themselves.

The Abiyev cycles of the 4^{th} order frame and 2^{nd} order central square are the same in singleeven and in double-even squares.

Very interesting that Abiyev cycle E'_n is different $E'_{n-4}, E'_{n-8}, \dots, E'_6$, but is same with E_{n-2} Abiyev cycle for double-even balanced square of n^{th} order. The parameters of balanced squares are summarized in table.

Table. Parametres of balanced squares.

Number of frame (i)	1	2	3	 i	i+1	 $\frac{n}{2}$ -3	$\frac{n}{2}$ -2	$\frac{n}{2}-1$	$\frac{n}{2}$
Order of frame (μ_i)	п	<i>n</i> -2	<i>n</i> –4	 2n-2(i-1)	n-2i	 8	6	4	2
Abiyev's cycle	En	E _{n-2}	E _{n-4}	 E_{μ}	E _{µ-2}	 E_8	E ₆	E ₄	E ₂
The number of cells which are in the frame	4(n-1)	4(n-3)	4(n-5)	 4[n-(2i-1)]	4[n-(2i+1)]	 4.7	4.5	4.3	4.1

$$\left\{ 1 \le i \le \frac{n}{2} \mid i \in N \right\}$$

3. DISCUSSION:

The special properties occuring in balanced squares due to its characteristic natural phenomena. These properties, which are explained in [5], are not available in other methods [6], [7], [8], [9]. Attention, there is a perfect situation for balanced square that; the square can formed with any number.

If the Abiyev cycles are examined, this is seen that; cycles for single-even squares transform to cycles for double-even squares.

The difference between the Abiyev cycles from each other only in "+" signs.

If the cells are painted, according to sequences α , β , γ , and δ different colours, in the result the colours of cells will form 2 double butterfly wings, which are certainly different from each other.

In addition, for forming the balanced squares of odd-orders, we find the algorithm.

The 17th and 15th orders Abiyev cycles for odd order balanced square is shown in figure 4.

Example for n=17 the general balanced square is shown in figure 6.

THEOREM 3: The suggested algorithm allows construct the balanced square for any order [10].

The proof of this theorem will be given in another article.

4. ACKNOWLEDGEMENT

We espesially tank to Prof. Dr. L. A. Zadeh and Prof. Dr. R.A. Aliev for interested in balanced squares.

REFERENCES

1. A. A. Abiyev, A. Baykasoglu, T. Dereli, I. H. Filiz, A. Abiyev, Investigation of center of mass by using magic square and its possible engineering applications, Robotics and Autonomous Systems, 49, (2004) 219-226.

2. Abiyev A. A. Doğal sihirli kareler, Tübitak, Bilim ve Teknik (in Turkish), 2000, pp. 87-89.

3. N.Christofides, Graph Theory (an algorithmic approach), Academic Press, New York, 1975.

4. A. A. Abiyev, Natural Magic Squares and Its Possible Application Areas, Proceedings of ICRM, 2nd International Conference on Responsive Manufactoring in Gaziantep University Turkey, 26-28 June 2002, pp.458-466.

5. A. A. Abiyev, A. Abiyev, Doğal Sihirli Karelerin Özellikleri, Sakarya Üniversitesi Fen Bilimleri Enstitüsü dergisi, 6. Cilt, 1. Mart 2002.

6. Cistoper J..: Magic Squares and Linear Algebra, American Matematical Montly,98,1991, No:6, 481-488.

7. Kuo T.T. The Construction of Double-Even Magic Square, J. Recretional Matematics, 15, (2) 1982, 94-102.

8. Tamari's Algorithm.

http://www.pse.che.tohoku.ac.jp/~msuzuki/magic square.alg.Tamori.html

9. Shin K.Y. The Perfect Solution for The Magic-Square.

http://www.coillian.net/~branstm/magicsquare.html

10 A. A. Abiyev, Magic Squares.

http://www1. gantep.edu.tr/~ abiyev

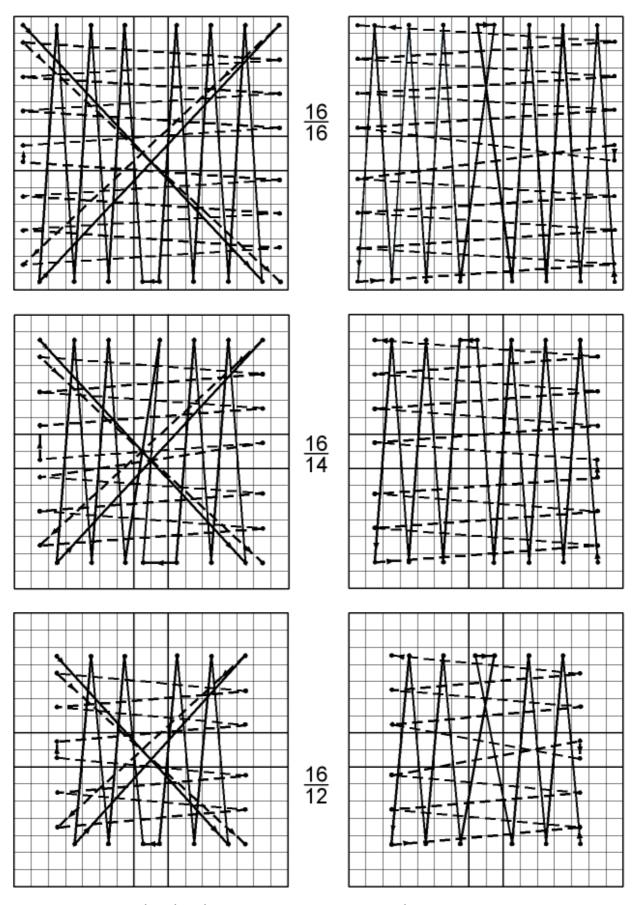


Fig. 2. 16th, 14th, 12th orders of Abiyev cycles in 16th order balanced square.

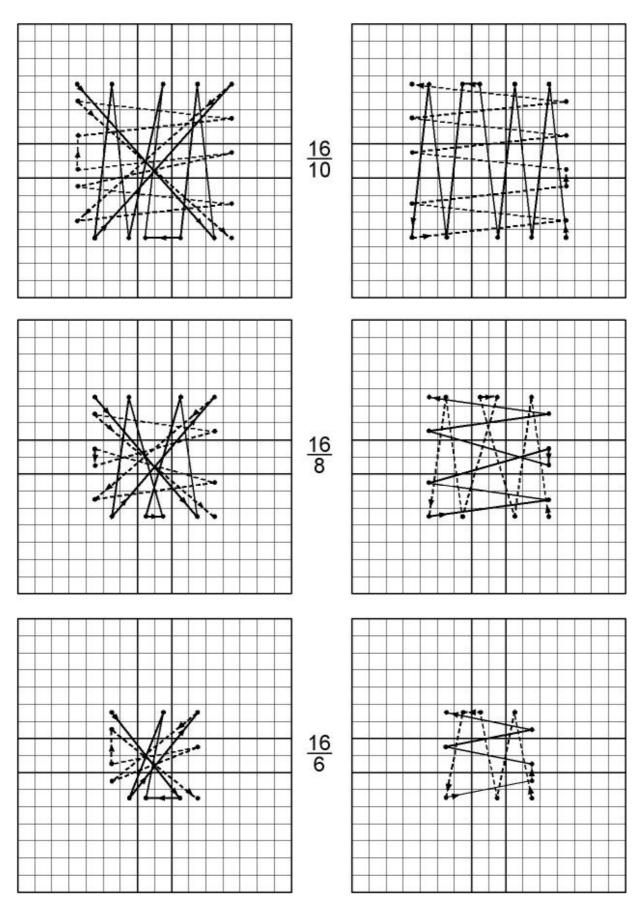


Fig. 3. 10th, 8th, 6th orders of Abiyev cycles in 16th order balanced square.

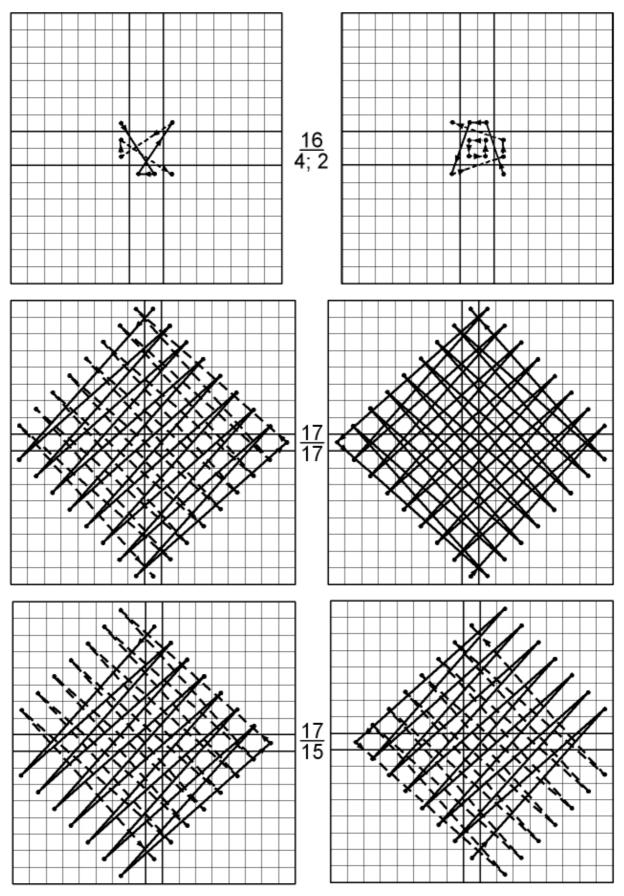


Fig. 4. 4th, 2th of Abiyev cycles in 16th order balanced square; and 17th, 15th orders of Abiyev cycles in 17th order balanced square.

a₀0b	1b	13b	3b	11b	5b	9b	8b	7b	6b	10b	4b	12b	2b	14b	15b
0c	15c	0c	15c	0c	15c	0c	15c	15c	0c	15c	0c	15c	0c	15c	0c
15b	1b	2b	12b	4b	10b	6b	7b	8b	9b	5b	11b	3b	13b	14b	0b
14c	1c	14c	1c	14c	1c	14c	14c	1c	14c	1c	14c	1c	14c	1c	1c
0b	14b	2b	3b	11b	5b	9b	8b	7b	6b	10b	4b	12b	13b	1b	15b
2c	13c	2c	13c	2c	13c	2c	13c	13c	2c	13c	1c	13c	2c	2c	13c
15b	1b	13b	3b	4b	10b	6b	7b	8b	9b	5b	11b	12b	2b	14b	0b
12c	3c	12c	3c	12c	3c	12c	12c	3c	12c	3c	12c	3c	3c	12c	3c
0b	14b	2b	12b	4b	5b	9b	8b	7b	6b	10b	11b	3b	13b	1b	15b
4c	11c	4c	11c	4c	11c	4c	11c	11c	4c	11c	4c	4c	11c	4c	11c
15b	1b	13b	3b	11b	5b	6b	7b	8b	9b	10b	4b	12b	2b	14b	0b
10c	5c	10c	5c	10c	5c	10c	10c	5c	10c	5c	5c	10c	5c	10c	5c
0b	14b	2b	12b	4b	10b	6b	7b	8b	9b	5b	11b	3b	13b	1b	15b
6c	9c	6c	9c	6c	9c	6c	9c	9c	6c	6c	9c	6c	9c	6c	9c
15b	1b	13b	3b	11b	5b	9b	8b	7b	6b	10b	4b	12b	2b	14b	0b
8c	7c	8c	7c	7c	7c	8c	8c	8c	7c	7c	8c	7c	8c	7c	8c
15b	14b	13b	12b	11b	10b	9b	8b	7b	6b	5b	4b	3b	2b	1b	0b
7c	8c	7c	8c	8c	8c	7c	7c	7c	8c	8c	7c	8c	7c	8c	7c
0b	14b	2b	12b	4b	10b	6b	8b	7b	9b	5b	11b	3b	13b	1b	15b
9c	6c	9c	6c	9c	6c	9c	6c	6c	9c	9c	6c	9c	6c	9c	6c
15b	1b	13b	3b	11b	5b	9b	7b	8b	6b	10b	4b	12b	2b	14b	0b
5c	10c	5c	10c	5c	10c	5c	5c	10c	5c	10c	10c	5c	10c	5c	10c
0b	14b	2b	12b	4b	10b	6b	7b	8b	9b	5b	11b	3b	13b	1b	15b
11c	4c	11c	4c	11c	4c	11c	4c	4c	11c	4c	11c	11c	4c	11c	4c
15b	1b	13b	3b	11b	5b	9b	7b	8b	6b	10b	4b	12b	2b	14b	0b
3c	12c	3c	12c	3c	12c	3c	3c	12c	3c	12c	3c	12c	12c	3c	12c
0b	14b	2b	12b	4b	10b	6b	8b	7b	9b	5b	11b	3b	13b	1b	15b
13c	2c	13c	2c	13c	2c	13c	2c	2c	13c	2c	13c	2c	13c	13c	2c
15b	1b	13b	3b	11b	5b	9b	7b	8b	6b	10b	4b	12b	2b	14b	0b
1c	14c	1c	14c	1c	14c	1c	1c	14c	1c	14c	1c	14c	1c	14c	14c
0b	14b	2b	12b	4b	10b	6b	8b	7b	9b	5b	11b	3b	13b	1b	15b
15c	0c	15c	0c	15c	0c	15c	0c	0c	15c	0c	15c	0c	15c	0c	15c

Fig. 5. General balanced square of 16^{th} order. The first term (a₀) of the sequences are present in all cells.

	_								_							
9b	10b	11b	12b	13b	14b	15b	16b	a₀0b	1b	2b	3b	4b	5b	6b	7b	8b
8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c
10b	11b	12b	13b	14b	15b	16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b
9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c
11b	12b	13b	14b	15b	16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b
10c	9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c
12b	13b	14b	15b	16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	11b
11c	10c	9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c
13b	14b	15b	16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	11b	12b
12c	11c	10c	9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c
14b	15b	16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	11b	12b	13b
13c	12c	11c	10c	9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c
15b	16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	11b	12b	13b	14b
14c	13c	12c	11c	10c	9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c	15c
16b	0b	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	11b	12b	13b	14b	15b
15c	14c	13c	12c	11c	10c	9c	8c	7c	6c	5c	4c	3c	2c	1c	0c	16c
0b 16c	1b 15c	2b 14c	3b 13c	4b 12c	5b 11c	6b 10c	7b 9c	8b ● 8c	9b 7c	10b 6c	11b 5c	12b 4c	13b 3c	14b 2c	15b 1c	16b 0c
1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b
0c	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c	6c	5c	4c	3c	2c	1c
2b	3b	4b	5b	6b	7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b
1c	Oc	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c	6c	5c	4c	3c	2c
3b	4b	5b	6b	7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b	2b
2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c	6c	5c	4c	3c
4b	5b	6b	7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b	2b	3b
3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c	6c	5c	4c
5b	6b	7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b	2b	3b	4b
4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c	6c	5c
6b	7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b	2b	3b	4b	5b
5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c	6c
7b	8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b	2b	3b	4b	5b	6b
6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c	8c	7c
8b	9b	10b	11b	12b	13b	14b	15b	16b	0b	1b	2b	3b	4b	5b	6b	7b
7c	6c	5c	4c	3c	2c	1c	0c	16c	15c	14c	13c	12c	11c	10c	9c	8c

Fig. 6. General balanced square of 17^{th} order. The first term (a₀) of the sequences are present in all cells.

a₀ 0b	1b	15b	3b	13b	5b	11b	7b	8b	9b	10b	6b	12b	4b	14b	2b	16b	17b
0c	17c	0c	17c	0c	17c	0c	17c	17c	0c								
17b	1b	2b	14b	4b	12b	6b	10b	8b	9b	7b	11b	5b	13b	3b	15b	16b	0b
16c	1c	16c	1c	16c	1c	16c	1c	16c	16c	1c	16c	1c	16c	1c	16c	1c	1c
0b	16b	2b	3b	13b	5b	11b	7b	9b	8b	10b	6b	12b	4b	14b	15b	1b	17b
2c	15c	2c	15c	2c	15c	2c	15c	2c	15c	15c	2c	15c	2c	15c	2c	2c	15c
17b	1b	15b	3b	4b	12b	6b	10b	8b	9b	7b	11b	5b	13b	14b	2b	16b	0b
14c	3c	14c	3c	14c	3c	14c	3c	14c	14c	3c	14c	3c	14c	3c	3c	14c	3c
0b	16b	2b	14b	4b	5b	11b	7b	9b	8b	10b	6b	12b	13b	3b	15b	1b	17b
4c	13c	4c	13c	4c	13c	4c	13c	4c	13c	13c	4c	13c	4c	4c	13c	4c	13c
17b	1b	15b	3b	13b	5b	6b	10b	8b	9b	7b	11b	12b	4b	14b	2b	16b	0b
12c	5c	12c	5c	12c	5c	12c	5c	12c	12c	5c	12c	5c	5c	12c	5c	12c	5c
0b	16b	2b	14b	4b	12b	6b	7b	9b	8b	10b	11b	5b	13b	3b	15b	1b	17b
6c	11c	6c	11c	6c	11c	6c	11c	6c	11c	11c	6c	6c	11c	6c	11c	6c	11c
17b	1b	15b	3b	13b	5b	11b	7b	8b	9b	10b	6b	12b	4b	14b	2b	16b	0b
10c	7c	10c	7c	10c	7c	10c	7c	10c	10c	7c	7c	10c	7c	10c	7c	10c	7c
0b	16b	15b	14b	13b	12b	11b	10b	9b	8b	7b	6b	5b	4b	3b	2b	1b	17b
8c	8c	9c	8c	9c	8c	9c	9c	9c	9c	8c	9c	8c	9c	8c	9c	8c	8c
17b	16b	2b	14b	4b	12b	6b	10b	9b	8b	7b	11b	5b	13b	3b	15b	1b	0b
9c	9c	8c	9c	8c	9c	8c	8c	8c	8c	9c	8c	9c	8c	9c	8c	9c	9c
17b	1b	15b	3b	13b	5b	11b	7b	9b	8b	10b	6b	12b	4b	14b	2b	16b	0b
7c	10c	7c	10c	7c	10c	7c	10c	7c	7c	10c	10c	7c	10c	7c	10c	7c	10c
0b	16b	2b	14b	4b	12b	6b	10b	9b	8b	7b	11b	5b	13b	3b	15b	1b	17b
11c	6c	11c	6c	11c	6c	11c	6c	11c	6c	6c	11c	11c	6c	11c	6c	11c	6c
17b	1b	15b	3b	13b	5b	11b	7b	8b	9b	10b	6b	12b	4b	14b	2b	16b	0b
5c	12c	5c	12c	5c	12c	5c	12c	5c	5c	12c	5c	12c	12c	5c	12c	5c	12c
0b	16b	2b	14b	4b	12b	6b	10b	9b	8b	7b	11b	5b	13b	3b	15b	1b	17b
13c	4c	13c	4c	13c	4c	13c	4c	13c	4c	4c	13c	4c	13c	13c	4c	13c	4c
17b	1b	15b	3b	13b	5b	11b	7b	8b	9b	10b	6b	12b	4b	14b	2b	16b	0b
3c	14c	3c	14c	3c	14c	3c	14c	3c	3c	14c	3c	14c	3c	14c	14c	3c	14c
0b	16b	2b	14b	4b	12b	6b	10b	9b	8b	7b	11b	5b	13b	3b	15b	1b	17b
15c	2c	15c	2c	15c	2c	15c	2c	15c	2c	2c	15c	2c	15c	2c	15c	15c	2c
17b	1b	15b	3b	13b	5b	11b	7b	8b	9b	10b	6b	12b	4b	14b	2b	16b	0b
1c	16c	1c	16c	1c	16c	1c	16c	1c	1c	16c	1c	16c	1c	16c	1c	16c	16c
0b	16b	2b	14b	4b	12b	6b	10b	8b	9b	7b	11b	5b	13b	3b	15b	1b	17b
17c	0c	17c	0c	17c	0c	17c	0c	0c	17c								

Fig. 7. General balanced square of 18^{th} order. The first term (a₀) of the sequences are present in all cells.